Authenticating Computation on Groups: New Homomorphic Primitives and Applications

Dario Catalano Università di Catania Antonio Marcedone Cornell University

Orazio Puglisi Università di Catania

Outline

Delegating computation on authenticated data

- Motivating example
- Linearly Homomorphic Signature
- Authenticated Encryption
- Linearly Homomorphic Authenticated Encryption with Public Verifiability (LAEPuV)
 - Definition and security
 - Generic Construction outline and Instantiation
- Other results

Delegating Computation on Authenticated Data

Delegating Computation on Authenticated Data

Verification is done w.r.t. a function f:

Ver(pk, f, M, σ)

 The signatures must be succinct (indipendent on the number of messages).

Delegating Computation on Authenticated Data

Authenticated Encryption

Delegating Computation on Authenticated Data with privacy

Linearly Homomorphic Authenticated Encryption with Public Verifiability

Inspired by [JY14]

- □ AE-KeyGen(1^{$^},k$)→(sk, vk)</sup>
- $\Box \text{ AE-Encrypt (sk, FID, i, M)} \rightarrow C$
- □ AE-Verify(vk, FID, C, f) \rightarrow {0,1} Public Verifiability
- ${\scriptstyle \square}$ AE-Decrypt (sk, FID, C, f) \rightarrow M or \perp
- □ AE-Eval(vk, f, FID, $\{C_i\}_{i=1,...,k}$) →C

Security: LH-IND-CCA for privacy, LH-Uf-CMA for integrity

M message space, additive group

R randomness space, multiplicative group

C ciphertext space, multiplicative group

M message space, additive group

R randomness space, multiplicative group

C ciphertext space, multiplicative group

M message space, additive group

R randomness space, multiplicative group

C ciphertext space, multiplicative group

T IND-CPA secure Public Key Encryption Scheme $Enc_{pk}(M_1,R_1)^*Enc_{pk}(M_2,R_2)=Enc_{pk}(M_1+M_2,R_1^*R_2)$

Σ Linearly Homomorphic signature scheme for elements in M

M message space, additive group

R randomness space, multiplicative group

C ciphertext space, multiplicative group

T IND-CPA secure Public Key Encryption Scheme $Enc_{pk}(M_1,R_1)*Enc_{pk}(M_2,R_2)=Enc_{pk}(M_1+M_2,R_1*R_2)$

Σ Linearly Homomorphic signature scheme for elements in M

H Random Oracle

LAEPuV - Encryption

LAEPuV - Eval

$f = (\alpha_1, \alpha_2, \dots, \alpha_k)$

 $f(m_1 + \beta_1, \dots, m_k + \beta_k)$

HOM-EVAL f $m_1 + \beta_1, \dots, m_k + \beta_k$ $\sigma_1, \dots, \sigma_k$

LAEPuV - Practical Instantiation

Paillier's encryption guarantees the homomorphic property of T $(g^{m_1}r_1^N)(g^{m_2}r_2^N) = g^{m_1+m_2}(r_1r_2)^N$

 As concrete instantiation of the linearly homomorphic signature scheme one can use a simple variant of the (strong) RSA based scheme [CFW12]

Other results (in the paper)

A Linearly homomorphic signature scheme to sign elements in (bilinear) groups

This has nice applications in the context of On-line/Off-line signatures

Efficient Delegation of Computation over encrypted data

□ [JY14], [FGP14]

Conclusion and Open problems

Very efficient
General construction
Public Verifiability

Only linear functions X Needs ROM X

Conclusion and Open problems

Interesting Open questions remain :

 How to extend to more general functionalities?

• How to avoid ROM?

Authenticaticating Computation on Groups: New Primitives and Applications

Thank you